Sheet (6)

3.1. Find the Laplace transform of

(a)
$$x(t) = -e^{-at}u(-t)$$

(b)
$$x(t) = e^{at}u(-t)$$

3.5. Find the Laplace transform X(s) and sketch the pole-zero plot with the ROC for the following signals x(t):

(a)
$$x(t) = e^{-2t}u(t) + e^{-3t}u(t)$$

(b)
$$x(t) = e^{-3t}u(t) + e^{2t}u(-t)$$

(c)
$$x(t) = e^{2t}u(t) + e^{-3t}u(-t)$$

3.6. Let

$$x(t) = e^{-a|t|}$$

Find X(s) and sketch the zero-pole plot and the ROC for a > 0 and a < 0.

3.16. Find the inverse Laplace transform of the following X(s):

(a)
$$X(s) = \frac{1}{s+1}$$
, $Re(s) > -1$

(b)
$$X(s) = \frac{1}{s+1}$$
, $Re(s) < -1$

(c)
$$X(s) = \frac{s}{s^2 + 4}$$
, Re(s) > 0

(d)
$$X(s) = \frac{s+1}{(s+1)^2+4}$$
, Re(s) > -1

3.17. Find the inverse Laplace transform of the following X(s):

(a)
$$X(s) = \frac{2s+4}{s^2+4s+3}$$
, Re(s) > -1

(b)
$$X(s) = \frac{2s+4}{s^2+4s+3}$$
, Re(s) < -3

(c)
$$X(s) = \frac{2s+4}{s^2+4s+3}$$
, $-3 < \text{Re}(s) < -1$

Sheet (6)

- **3.25.** The output y(t) of a continuous-time LTI system is found to be $2e^{-3t}u(t)$ when the input x(t) is u(t).
 - (a) Find the impulse response h(t) of the system.
 - (b) Find the output y(t) when the input x(t) is $e^{-t}u(t)$.
- **3.30.** Consider a continuous-time LTI system for which the input x(t) and output y(t) are related by

$$y''(t) + y'(t) - 2y(t) = x(t)$$
(3.86)

- (a) Find the system function H(s).
- (b) Determine the impulse response h(t) for each of the following three cases: (i) the system is causal, (ii) the system is stable, (iii) the system is neither causal nor stable.